Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glutaredoxin regulates vascular development by reversible glutathionylation of sirtuin 1.

Identifieur interne : 000762 ( Main/Exploration ); précédent : 000761; suivant : 000763

Glutaredoxin regulates vascular development by reversible glutathionylation of sirtuin 1.

Auteurs : Lars Br Utigam [Suède] ; Lasse Dahl Ejby Jensen ; Gereon Poschmann ; Staffan Nyström ; Sarah Bannenberg ; Kristian Dreij ; Klaudia Lepka ; Timour Prozorovski ; Sergio J. Montano ; Orhan Aktas ; Per Uhlén ; Kai Stühler ; Yihai Cao ; Arne Holmgren ; Carsten Berndt

Source :

RBID : pubmed:24277839

Descripteurs français

English descriptors

Abstract

Embryonic development depends on complex and precisely orchestrated signaling pathways including specific reduction/oxidation cascades. Oxidoreductases of the thioredoxin family are key players conveying redox signals through reversible posttranslational modifications of protein thiols. The importance of this protein family during embryogenesis has recently been exemplified for glutaredoxin 2, a vertebrate-specific glutathione-disulfide oxidoreductase with a critical role for embryonic brain development. Here, we discovered an essential function of glutaredoxin 2 during vascular development. Confocal microscopy and time-lapse studies based on two-photon microscopy revealed that morpholino-based knockdown of glutaredoxin 2 in zebrafish, a model organism to study vertebrate embryogenesis, resulted in a delayed and disordered blood vessel network. We were able to show that formation of a functional vascular system requires glutaredoxin 2-dependent reversible S-glutathionylation of the NAD(+)-dependent protein deacetylase sirtuin 1. Using mass spectrometry, we identified a cysteine residue in the conserved catalytic region of sirtuin 1 as target for glutaredoxin 2-specific deglutathionylation. Thereby, glutaredoxin 2-mediated redox regulation controls enzymatic activity of sirtuin 1, a mechanism we found to be conserved between zebrafish and humans. These results link S-glutathionylation to vertebrate development and successful embryonic angiogenesis.

DOI: 10.1073/pnas.1313753110
PubMed: 24277839
PubMed Central: PMC3864331


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glutaredoxin regulates vascular development by reversible glutathionylation of sirtuin 1.</title>
<author>
<name sortKey="Br Utigam, Lars" sort="Br Utigam, Lars" uniqKey="Br Utigam L" first="Lars" last="Br Utigam">Lars Br Utigam</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Medical Biochemistry and Biophysics, Department of Molecular Tumor and Cell Biology, and Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Medical Biochemistry and Biophysics, Department of Molecular Tumor and Cell Biology, and Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jensen, Lasse Dahl Ejby" sort="Jensen, Lasse Dahl Ejby" uniqKey="Jensen L" first="Lasse Dahl Ejby" last="Jensen">Lasse Dahl Ejby Jensen</name>
</author>
<author>
<name sortKey="Poschmann, Gereon" sort="Poschmann, Gereon" uniqKey="Poschmann G" first="Gereon" last="Poschmann">Gereon Poschmann</name>
</author>
<author>
<name sortKey="Nystrom, Staffan" sort="Nystrom, Staffan" uniqKey="Nystrom S" first="Staffan" last="Nyström">Staffan Nyström</name>
</author>
<author>
<name sortKey="Bannenberg, Sarah" sort="Bannenberg, Sarah" uniqKey="Bannenberg S" first="Sarah" last="Bannenberg">Sarah Bannenberg</name>
</author>
<author>
<name sortKey="Dreij, Kristian" sort="Dreij, Kristian" uniqKey="Dreij K" first="Kristian" last="Dreij">Kristian Dreij</name>
</author>
<author>
<name sortKey="Lepka, Klaudia" sort="Lepka, Klaudia" uniqKey="Lepka K" first="Klaudia" last="Lepka">Klaudia Lepka</name>
</author>
<author>
<name sortKey="Prozorovski, Timour" sort="Prozorovski, Timour" uniqKey="Prozorovski T" first="Timour" last="Prozorovski">Timour Prozorovski</name>
</author>
<author>
<name sortKey="Montano, Sergio J" sort="Montano, Sergio J" uniqKey="Montano S" first="Sergio J" last="Montano">Sergio J. Montano</name>
</author>
<author>
<name sortKey="Aktas, Orhan" sort="Aktas, Orhan" uniqKey="Aktas O" first="Orhan" last="Aktas">Orhan Aktas</name>
</author>
<author>
<name sortKey="Uhlen, Per" sort="Uhlen, Per" uniqKey="Uhlen P" first="Per" last="Uhlén">Per Uhlén</name>
</author>
<author>
<name sortKey="Stuhler, Kai" sort="Stuhler, Kai" uniqKey="Stuhler K" first="Kai" last="Stühler">Kai Stühler</name>
</author>
<author>
<name sortKey="Cao, Yihai" sort="Cao, Yihai" uniqKey="Cao Y" first="Yihai" last="Cao">Yihai Cao</name>
</author>
<author>
<name sortKey="Holmgren, Arne" sort="Holmgren, Arne" uniqKey="Holmgren A" first="Arne" last="Holmgren">Arne Holmgren</name>
</author>
<author>
<name sortKey="Berndt, Carsten" sort="Berndt, Carsten" uniqKey="Berndt C" first="Carsten" last="Berndt">Carsten Berndt</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24277839</idno>
<idno type="pmid">24277839</idno>
<idno type="doi">10.1073/pnas.1313753110</idno>
<idno type="pmc">PMC3864331</idno>
<idno type="wicri:Area/Main/Corpus">000684</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000684</idno>
<idno type="wicri:Area/Main/Curation">000684</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000684</idno>
<idno type="wicri:Area/Main/Exploration">000684</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glutaredoxin regulates vascular development by reversible glutathionylation of sirtuin 1.</title>
<author>
<name sortKey="Br Utigam, Lars" sort="Br Utigam, Lars" uniqKey="Br Utigam L" first="Lars" last="Br Utigam">Lars Br Utigam</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Medical Biochemistry and Biophysics, Department of Molecular Tumor and Cell Biology, and Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Medical Biochemistry and Biophysics, Department of Molecular Tumor and Cell Biology, and Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jensen, Lasse Dahl Ejby" sort="Jensen, Lasse Dahl Ejby" uniqKey="Jensen L" first="Lasse Dahl Ejby" last="Jensen">Lasse Dahl Ejby Jensen</name>
</author>
<author>
<name sortKey="Poschmann, Gereon" sort="Poschmann, Gereon" uniqKey="Poschmann G" first="Gereon" last="Poschmann">Gereon Poschmann</name>
</author>
<author>
<name sortKey="Nystrom, Staffan" sort="Nystrom, Staffan" uniqKey="Nystrom S" first="Staffan" last="Nyström">Staffan Nyström</name>
</author>
<author>
<name sortKey="Bannenberg, Sarah" sort="Bannenberg, Sarah" uniqKey="Bannenberg S" first="Sarah" last="Bannenberg">Sarah Bannenberg</name>
</author>
<author>
<name sortKey="Dreij, Kristian" sort="Dreij, Kristian" uniqKey="Dreij K" first="Kristian" last="Dreij">Kristian Dreij</name>
</author>
<author>
<name sortKey="Lepka, Klaudia" sort="Lepka, Klaudia" uniqKey="Lepka K" first="Klaudia" last="Lepka">Klaudia Lepka</name>
</author>
<author>
<name sortKey="Prozorovski, Timour" sort="Prozorovski, Timour" uniqKey="Prozorovski T" first="Timour" last="Prozorovski">Timour Prozorovski</name>
</author>
<author>
<name sortKey="Montano, Sergio J" sort="Montano, Sergio J" uniqKey="Montano S" first="Sergio J" last="Montano">Sergio J. Montano</name>
</author>
<author>
<name sortKey="Aktas, Orhan" sort="Aktas, Orhan" uniqKey="Aktas O" first="Orhan" last="Aktas">Orhan Aktas</name>
</author>
<author>
<name sortKey="Uhlen, Per" sort="Uhlen, Per" uniqKey="Uhlen P" first="Per" last="Uhlén">Per Uhlén</name>
</author>
<author>
<name sortKey="Stuhler, Kai" sort="Stuhler, Kai" uniqKey="Stuhler K" first="Kai" last="Stühler">Kai Stühler</name>
</author>
<author>
<name sortKey="Cao, Yihai" sort="Cao, Yihai" uniqKey="Cao Y" first="Yihai" last="Cao">Yihai Cao</name>
</author>
<author>
<name sortKey="Holmgren, Arne" sort="Holmgren, Arne" uniqKey="Holmgren A" first="Arne" last="Holmgren">Arne Holmgren</name>
</author>
<author>
<name sortKey="Berndt, Carsten" sort="Berndt, Carsten" uniqKey="Berndt C" first="Carsten" last="Berndt">Carsten Berndt</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Blotting, Western (MeSH)</term>
<term>Cardiovascular System (embryology)</term>
<term>DNA Primers (genetics)</term>
<term>Gene Knockdown Techniques (MeSH)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (metabolism)</term>
<term>HeLa Cells (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Mass Spectrometry (MeSH)</term>
<term>Microscopy, Confocal (MeSH)</term>
<term>Neovascularization, Physiologic (physiology)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Real-Time Polymerase Chain Reaction (MeSH)</term>
<term>Signal Transduction (genetics)</term>
<term>Signal Transduction (physiology)</term>
<term>Sirtuin 1 (metabolism)</term>
<term>Time-Lapse Imaging (MeSH)</term>
<term>Zebrafish (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Amorces ADN (génétique)</term>
<term>Animaux (MeSH)</term>
<term>Cellules HeLa (MeSH)</term>
<term>Danio zébré (MeSH)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Imagerie accélérée (MeSH)</term>
<term>Microscopie confocale (MeSH)</term>
<term>Néovascularisation physiologique (physiologie)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Réaction de polymérisation en chaine en temps réel (MeSH)</term>
<term>Sirtuine-1 (métabolisme)</term>
<term>Spectrométrie de masse (MeSH)</term>
<term>Système cardiovasculaire (embryologie)</term>
<term>Technique de Western (MeSH)</term>
<term>Techniques de knock-down de gènes (MeSH)</term>
<term>Transduction du signal (génétique)</term>
<term>Transduction du signal (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA Primers</term>
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="embryologie" xml:lang="fr">
<term>Système cardiovasculaire</term>
</keywords>
<keywords scheme="MESH" qualifier="embryology" xml:lang="en">
<term>Cardiovascular System</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Amorces ADN</term>
<term>Glutarédoxines</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Sirtuin 1</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Sirtuine-1</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Néovascularisation physiologique</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Neovascularization, Physiologic</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Blotting, Western</term>
<term>Gene Knockdown Techniques</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Mass Spectrometry</term>
<term>Microscopy, Confocal</term>
<term>Oxidation-Reduction</term>
<term>Real-Time Polymerase Chain Reaction</term>
<term>Time-Lapse Imaging</term>
<term>Zebrafish</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules HeLa</term>
<term>Danio zébré</term>
<term>Humains</term>
<term>Imagerie accélérée</term>
<term>Microscopie confocale</term>
<term>Oxydoréduction</term>
<term>Réaction de polymérisation en chaine en temps réel</term>
<term>Spectrométrie de masse</term>
<term>Technique de Western</term>
<term>Techniques de knock-down de gènes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Embryonic development depends on complex and precisely orchestrated signaling pathways including specific reduction/oxidation cascades. Oxidoreductases of the thioredoxin family are key players conveying redox signals through reversible posttranslational modifications of protein thiols. The importance of this protein family during embryogenesis has recently been exemplified for glutaredoxin 2, a vertebrate-specific glutathione-disulfide oxidoreductase with a critical role for embryonic brain development. Here, we discovered an essential function of glutaredoxin 2 during vascular development. Confocal microscopy and time-lapse studies based on two-photon microscopy revealed that morpholino-based knockdown of glutaredoxin 2 in zebrafish, a model organism to study vertebrate embryogenesis, resulted in a delayed and disordered blood vessel network. We were able to show that formation of a functional vascular system requires glutaredoxin 2-dependent reversible S-glutathionylation of the NAD(+)-dependent protein deacetylase sirtuin 1. Using mass spectrometry, we identified a cysteine residue in the conserved catalytic region of sirtuin 1 as target for glutaredoxin 2-specific deglutathionylation. Thereby, glutaredoxin 2-mediated redox regulation controls enzymatic activity of sirtuin 1, a mechanism we found to be conserved between zebrafish and humans. These results link S-glutathionylation to vertebrate development and successful embryonic angiogenesis. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24277839</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>02</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>110</Volume>
<Issue>50</Issue>
<PubDate>
<Year>2013</Year>
<Month>Dec</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Glutaredoxin regulates vascular development by reversible glutathionylation of sirtuin 1.</ArticleTitle>
<Pagination>
<MedlinePgn>20057-62</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1313753110</ELocationID>
<Abstract>
<AbstractText>Embryonic development depends on complex and precisely orchestrated signaling pathways including specific reduction/oxidation cascades. Oxidoreductases of the thioredoxin family are key players conveying redox signals through reversible posttranslational modifications of protein thiols. The importance of this protein family during embryogenesis has recently been exemplified for glutaredoxin 2, a vertebrate-specific glutathione-disulfide oxidoreductase with a critical role for embryonic brain development. Here, we discovered an essential function of glutaredoxin 2 during vascular development. Confocal microscopy and time-lapse studies based on two-photon microscopy revealed that morpholino-based knockdown of glutaredoxin 2 in zebrafish, a model organism to study vertebrate embryogenesis, resulted in a delayed and disordered blood vessel network. We were able to show that formation of a functional vascular system requires glutaredoxin 2-dependent reversible S-glutathionylation of the NAD(+)-dependent protein deacetylase sirtuin 1. Using mass spectrometry, we identified a cysteine residue in the conserved catalytic region of sirtuin 1 as target for glutaredoxin 2-specific deglutathionylation. Thereby, glutaredoxin 2-mediated redox regulation controls enzymatic activity of sirtuin 1, a mechanism we found to be conserved between zebrafish and humans. These results link S-glutathionylation to vertebrate development and successful embryonic angiogenesis. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bräutigam</LastName>
<ForeName>Lars</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Medical Biochemistry and Biophysics, Department of Molecular Tumor and Cell Biology, and Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jensen</LastName>
<ForeName>Lasse Dahl Ejby</ForeName>
<Initials>LD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Poschmann</LastName>
<ForeName>Gereon</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nyström</LastName>
<ForeName>Staffan</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bannenberg</LastName>
<ForeName>Sarah</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dreij</LastName>
<ForeName>Kristian</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lepka</LastName>
<ForeName>Klaudia</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Prozorovski</LastName>
<ForeName>Timour</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Montano</LastName>
<ForeName>Sergio J</ForeName>
<Initials>SJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Aktas</LastName>
<ForeName>Orhan</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Uhlén</LastName>
<ForeName>Per</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stühler</LastName>
<ForeName>Kai</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cao</LastName>
<ForeName>Yihai</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Holmgren</LastName>
<ForeName>Arne</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Berndt</LastName>
<ForeName>Carsten</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>11</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017931">DNA Primers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.5.1.-</RegistryNumber>
<NameOfSubstance UI="D056564">Sirtuin 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015153" MajorTopicYN="N">Blotting, Western</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002319" MajorTopicYN="N">Cardiovascular System</DescriptorName>
<QualifierName UI="Q000196" MajorTopicYN="Y">embryology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017931" MajorTopicYN="N">DNA Primers</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055785" MajorTopicYN="N">Gene Knockdown Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006367" MajorTopicYN="N">HeLa Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013058" MajorTopicYN="N">Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018613" MajorTopicYN="N">Microscopy, Confocal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018919" MajorTopicYN="N">Neovascularization, Physiologic</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056564" MajorTopicYN="N">Sirtuin 1</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059008" MajorTopicYN="N">Time-Lapse Imaging</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015027" MajorTopicYN="N">Zebrafish</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">cardiovascular system</Keyword>
<Keyword MajorTopicYN="N">proteomics</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>11</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>11</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>2</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24277839</ArticleId>
<ArticleId IdType="pii">1313753110</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1313753110</ArticleId>
<ArticleId IdType="pmc">PMC3864331</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Dev Biol. 2002 Aug 15;248(2):307-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12167406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2001 Nov 15;61(22):8171-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11719447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Dyn. 1995 Jul;203(3):253-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8589427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 Feb 18;327(3):774-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15649413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13998-4003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16172407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2005 Dec;33(Pt 6):1375-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16246122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 2006 Jul 15;71(2):226-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16781692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Heart Circ Physiol. 2007 Mar;292(3):H1227-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17172268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2007 Jul 1;43(1):62-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17561094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2007 Sep 15;43(6):883-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17697933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Pharmacol. 2007 Aug;7(4):381-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17662654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2007 Sep 1;68(4):879-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17546662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2007 Oct 15;21(20):2644-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17938244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2007 Nov;9(11):1253-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17934453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Mar;10(3):547-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18092940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2008 Apr;10(4):385-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18344989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Ther. 2008 May;118(2):206-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18439684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2008 Jul 1;378(1):53-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18358225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1304-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Nov;10(11):1941-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18774901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(12):e4020</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19107194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2009 Apr 10;381(3):372-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19236849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(8):e6611</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19680552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 May;11(5):1059-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19119916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2010 May;2(5):a001875</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20452960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Sep 15;13(6):833-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20367257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Oct 1;13(7):1023-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20392170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2010 Sep;24(9):3145-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20385619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2010 Nov;12(11):1094-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20972425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):1925-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21245319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 May 12;473(7346):234-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21499261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Dev Biol. 2011;55(4-5):505-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21858773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2011;27:563-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21756109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Oncol. 2012 Jan;24(1):68-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22080944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20532-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22139372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Transl Med. 2011 Dec 21;3(114):114rv3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22190240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2011 Dec 23;44(6):851-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22195961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Dis. 2012;3:e271</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22318540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Lett. 2012 Jul 28;320(2):130-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22425960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(3):e34790</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22523530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 May 1;18(13):1654-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23231445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Nov 1;19(13):1539-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23397885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2000 Winter;2(4):653-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11213470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2001 Apr 20;105(2):269-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11336676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biochem. 1993 Dec;53(4):360-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8300753</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
<region>
<li>Svealand</li>
</region>
<settlement>
<li>Stockholm</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Aktas, Orhan" sort="Aktas, Orhan" uniqKey="Aktas O" first="Orhan" last="Aktas">Orhan Aktas</name>
<name sortKey="Bannenberg, Sarah" sort="Bannenberg, Sarah" uniqKey="Bannenberg S" first="Sarah" last="Bannenberg">Sarah Bannenberg</name>
<name sortKey="Berndt, Carsten" sort="Berndt, Carsten" uniqKey="Berndt C" first="Carsten" last="Berndt">Carsten Berndt</name>
<name sortKey="Cao, Yihai" sort="Cao, Yihai" uniqKey="Cao Y" first="Yihai" last="Cao">Yihai Cao</name>
<name sortKey="Dreij, Kristian" sort="Dreij, Kristian" uniqKey="Dreij K" first="Kristian" last="Dreij">Kristian Dreij</name>
<name sortKey="Holmgren, Arne" sort="Holmgren, Arne" uniqKey="Holmgren A" first="Arne" last="Holmgren">Arne Holmgren</name>
<name sortKey="Jensen, Lasse Dahl Ejby" sort="Jensen, Lasse Dahl Ejby" uniqKey="Jensen L" first="Lasse Dahl Ejby" last="Jensen">Lasse Dahl Ejby Jensen</name>
<name sortKey="Lepka, Klaudia" sort="Lepka, Klaudia" uniqKey="Lepka K" first="Klaudia" last="Lepka">Klaudia Lepka</name>
<name sortKey="Montano, Sergio J" sort="Montano, Sergio J" uniqKey="Montano S" first="Sergio J" last="Montano">Sergio J. Montano</name>
<name sortKey="Nystrom, Staffan" sort="Nystrom, Staffan" uniqKey="Nystrom S" first="Staffan" last="Nyström">Staffan Nyström</name>
<name sortKey="Poschmann, Gereon" sort="Poschmann, Gereon" uniqKey="Poschmann G" first="Gereon" last="Poschmann">Gereon Poschmann</name>
<name sortKey="Prozorovski, Timour" sort="Prozorovski, Timour" uniqKey="Prozorovski T" first="Timour" last="Prozorovski">Timour Prozorovski</name>
<name sortKey="Stuhler, Kai" sort="Stuhler, Kai" uniqKey="Stuhler K" first="Kai" last="Stühler">Kai Stühler</name>
<name sortKey="Uhlen, Per" sort="Uhlen, Per" uniqKey="Uhlen P" first="Per" last="Uhlén">Per Uhlén</name>
</noCountry>
<country name="Suède">
<region name="Svealand">
<name sortKey="Br Utigam, Lars" sort="Br Utigam, Lars" uniqKey="Br Utigam L" first="Lars" last="Br Utigam">Lars Br Utigam</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000762 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000762 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24277839
   |texte=   Glutaredoxin regulates vascular development by reversible glutathionylation of sirtuin 1.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24277839" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020